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A B S T R A C T

The distribution of snow cover is critical for predicting ecohydrological processes and underpins mountain water
supplies in ranges like the Sierra Nevada in the Western United States. Many key water supply areas are covered
by montane forests, which have substantial effects on the amount and timing of snowmelt. In-situ observations of
snow-forest interactions have limited spatial coverage and remote sensing using optical sensors (e.g. MODIS)
cannot observe snow cover below the canopy. In this study, we developed and verified a lidar-based method to
detect snow cover under canopy, investigated how fractional snow covered area (fSCA) varies with topography
in open versus under canopy areas and developed a correction factor that could be used to improve satellite-
derived fSCA products. We developed our new method using three snow-on lidar overflights and verified it with
in-situ distributed temperature sensor (DTS) observations at Sagehen Creek watershed in the Sierra Nevada,
California, USA. DTS validation of lidar classifications showed excellent agreement at 85–96%, including high
agreement and large number of returns in under canopy locations. The lidar-derived fSCA observations generally
showed earlier snow disappearance under the canopy than in open positions, which is consistent with relatively
warm temperatures and greater longwave radiation. However, in contrast to expectations, areas with high solar
exposure (i.e. high southwestness) exhibited higher fSCA under the canopy. Results indicated that the k factor
(the ratio of under canopy fSCA to open fSCA) varied systematically with southwestness and elevation. Using this
factor to correct the study domain fSCA indicated that the typical assumption that k=1 could lead to an up to
~0.05 bias (in fSCA units) towards overestimation. However, within 10 and 100-m individual pixels the fSCA
overprediction bias can be 25–30% for higher fSCA values. Although uncertainty would be reduced using higher
snow-on lidar point densities, our method shows promise to improve the typical assumption that snow dis-
appearance is identical in under the canopy and in the open (k=1). Future applications of our lidar-based
method at different sites with varying climate, topography and vegetation structure has the dual potential to
expand understanding of snow-forest interactions in complex terrain and improve operational fSCA products.

1. Introduction

Melt of seasonal snowpacks from mountain forests are critical for
water resources in the Northern Hemisphere (Barnett and Adam, 2005;
NRC, 2008). In Mediterranean mountain climates characterized by wet
winters and dry summers, such as the mountainous Western United
States, annual runoff is dominated by snow melt (Serreze et al., 1999; Li

et al., 2017). Consequently, changes to snowmelt and shifts from rain to
snow have important implications for streamflow (Berghuijs et al.,
2014; Barnhart et al., 2016) and land surface albedo (Robock, 1984;
Berg and Hall, 2017). Conifer forests occupy much of the snow zone in
the Western USA and exert strong controls on snow mass and energy
budgets. Changes to forest canopy from natural and anthropogenic
disturbances can alter snow processes that drive streamflow generation
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(Biederman et al., 2015; Buma and Livneh, 2015). For example, there is
evidence of both increasing and decreasing snow accumulation fol-
lowing disturbance from mountain pine beetles (e.g. Pugh and Small,
2012; Biederman et al., 2014). Observing snow-forest interactions is
critical to managing water availability for local ecosystem and down-
stream needs. However, the complex interactions of forest canopy and
snow are challenging to characterize because they are dynamic in space
and time.

Conifer forests exert counteracting biophysical controls on snow. On
one hand, denser forest canopy generally reduces snow accumulation
by intercepting incoming snowfall (Hedstrom and Pomeroy, 1998;
Storck et al., 2002; Moeser et al., 2016). On the other hand, forest ca-
nopy has complex effects on snow ablation (i.e. snow mass loss from
melt, sublimation, and evaporation) by both shading the snowpack
from shortwave energy inputs (Essery et al., 2008; Veatch et al., 2009)
and reducing turbulent kinetic energy (Link and Marks, 1999; Marks
et al., 2008), while also emitting longwave radiation to the snowpack
more effectively than the atmosphere (Sicart et al., 2006; Pomeroy
et al., 2009). Forests also alter patterns of wind-driven snow redis-
tribution and preferential accumulation (e.g. Marks et al., 2002; Cristea
et al., 2017). The interplay of seasonally varying shortwave and long-
wave energy and interception lead to differential snow disapearance in
open versus under canopy locations (Veatch et al., 2009; Musselman
et al., 2012; Lundquist et al., 2013; Broxton et al., 2014; Coons et al.,
2014; Harpold et al., 2014; Dickerson-Lange et al., 2015). Lundquist
et al. (2013) developed a conceptual model to argue that sites with
December–February (DJF) temperatures warmer than −1 °C were
likely to retain snow longer in the open than under canopy locations,
while colder sites retain snow in under canopy locations longer. This
differential response to canopy is driven by tradeoffs between forests
limiting shortwave radiation inputs and emitting longwave radiation,
both of which are sensitive to latitude, climate and forest structure
(Lundquist et al., 2013). The differential snow disappearance between
open and under canopy locations has implications for ecohydrological
processes, like root distribution and tree water stress (Small and
McConnell, 2008), and challenges conventional large-scale snow ob-
servation and modeling techniques.

Observing snow under forest canopy is challenging with either in-
situ or remote observations due to logistical constraints and the highly
dynamic timing of snow disappearance in forests. Inexpensive tem-
perature loggers are routinely used to detect the presence or absence of
snow by exploiting its insulating properties (Lundquist and Lott, 2008;
Raleigh et al., 2013). Cameras offer more spatial resolution than point
measurements but are difficult to automate and spatially register
(Dickerson-Lange et al., 2015; Garvelmann et al., 2013). Distributed
temperature sensing (DTS) measurements along a fiber optic cable
(Tyler et al., 2008; Tyler et al., 2009) greatly expand the spatial and
temporal resolution, but are somewhat limited in spatial coverage and
challenging to install and operate (Lutz et al., 2012; Dickerson-Lange
et al., 2015). While these field observations have strengths and weak-
nesses, they cannot match the spatial coverage offered by remote sen-
sing techniques. However, remote sensing observations of snow are
challenging because the forest canopy occludes optical retrievals
(Rittger et al., 2013), and also interferes with thermal (Lundquist et al.,
2018) and microwave-based sensing (e.g. Pulliainen et al., 1999; Royer
et al., 2010). Airplane and terrestrial-based lidar measure snowpack
extent at ~1m scales and decimeter accuracy (Harpold et al., 2015a).
Because lidar emits an active energy source (e.g. 532–1550 nm) that
can penetrate forest canopy, lidar observations have been successfully
used to simultaneously observe snowpack depth and forest structure
(Deems et al., 2013; Harpold et al., 2014; Harpold et al., 2015a).
However, lidar's ability and accuracy for estimating under-canopy snow
cover has received little attention (Zheng et al., 2016).

Several optical remote sensing retrieval techniques can be used to
detect snow presence or absence and estimate fractional snow cover
area (fSCA), but make assumptions about under canopy snow cover.

Optical sensors take advantage of strong differences in spectral prop-
erties of snow versus vegetation, and rock/soil (Hall and Riggs, 2007;
Painter et al., 2009). These strong spectral contrasts also allow snow to
be classified from an RGB camera (Garvelmann et al., 2013). However,
without improved information on snow-forest interactions, conven-
tional optical remote sensing products need to make assumptions about
snow cover under forest canopy that are not directly observed. From a
point-scale perspective, snow is observed as either present or absent. As
the spatial scale increases, however the pixel can become a mix of snow
and non-snow and can have fSCA between 0 and 1 (0% and 100%).
Snow disappearance timing is therefore related to fSCA, i.e. snow is
disappearing as fSCA decreases, but fSCA cannot explicitly account for
the disappearance of snow because of mixed pixel effects. Remote
sensing derived fSCA is a fundamental long-term observation (Dozier
and Painter, 2004; Painter et al., 2009) and critical to the development
of many current snowmelt models (e.g. Carroll et al., 2001; Molotch
and Margulis, 2008; Musselman et al., 2012), as well as SWE re-
construction models (e.g. Kahl, 2013; Bair et al., 2016). fSCA is routi-
nely retrieved using multi- and hyper-spectral platforms using their
respective spectral mixture analysis algorithms, i.e. MEMSCAG (Painter
et al., 2003), MODSCAG and TMSCAG (Painter et al., 2009). There is
potential to develop higher temporal resolution fSCA from geosta-
tionary satellites like GOES (i.e. GOESRSCAG (Cline et al., 2010)) or
higher spatial resolution fSCA without view angle effects from satellites
like Sentinel-2 and similar future missions (ESA, 2018). In all of these
platforms, the tree canopy occludes snow cover and generally requires
the assumption that the fSCA under the canopy is the same as the fSCA
of the viewable pixel fraction (e.g. Molotch and Margulis, 2008; Rittger
et al., 2013; Raleigh et al., 2013) or similar assumptions. For example,
the current implementation of the MODSCAG algorithm (Painter et al.,
2009) assumes that if the viewable fSCA is greater than zero and the
other coverage in the pixel is vegetation, then fSCA is assumed to be
100% below the canopy. Metsämäki et al. (2012) do not rely on such
assumptions and instead develop models that explicitly take into ac-
count forest transmissivity in their SCAmod method (Metsämäki et al.,
2012). More information about under canopy fSCA has the potential to
relax assumptions about under canopy snow cover in operational pro-
ducts, improve the accuracy of current snowmelt models (Slater et al.,
2013) and take advantage of higher resolution fSCA products in the
future.

In this paper, we developed a new method to estimate fSCA under
forest canopy over large spatial extents using lidar with the dual mo-
tivations of characterizing snow-vegetation interactions and improving
operational fSCA estimates. Our method is the first application of lidar
that takes advantage of its ability to penetrate the forest canopy in
order to explicitly map under canopy snow cover. We used a unique set
of multi-temporal lidar datasets and large-scale DTS field observations
from a heavily forested watershed in the Sierra Nevada range to esti-
mate fSCA separately in open areas versus under canopy, and develop
our new lidar-based method. Specifically, we addressed the following
questions:

1) can fSCA be reliably estimated under conifer tree canopies with
lidar-derived snow depth,

2) how does the relationship between open-area fSCA and under-ca-
nopy fSCA vary based on slope/aspect and elevation, and

3) can a spatially variable fSCA correction factor elucidate controls
on under-canopy snow processes and help correct coarser remote
sensing retrievals?

Lidar observations were used to derive differences between under
canopy and open fSCA by taking advantage of the high point density of
lidar at watershed scales to make new inferences about snow-vegetation
interactions and biases in current satellite-based fSCA estimates in
montane forests.
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2. Data and methods

2.1. Study site

The study site encompassed an approximately 8 km by 7 km region
covering the Sagehen Experimental Watershed (henceforth referred to
as Sagehen) and surrounding areas. Sagehen is a forested mountainous
watershed located in the Northern Sierra Nevada of California just east
of the Sierra crest (Fig. 1A). Characteristics of Sagehen are given in
Fig. 2, which also displays the DTS cable layout. For reference, the
location marked as 0m along the DTS cable in Fig. 2 panels is at
39°25′53.46″N, 120°14′23.14″W (WGS84). Elevations in the study area
ranged from ~1800m to ~2700m above sea level (with respect to the
NAVD88 datum) and were split into bins as shown in Fig. 2A. In-
dependence Lake (Fig. 2A) and a few small ponds fall within this area
and were excluded from the analysis. Sagehen is mostly covered by
conifer forests of different density, ranging from 0% to 100% tall

canopy at the 10m scale (Fig. 2C). Snow water equivalent (SWE) and
average daily air temperature data from SNOTEL (Serreze et al., 1999)
stations # 539, 540, and 541 were downloaded (https://www.wcc.nrcs.
usda.gov/) and used to illustrate SWE time series in 2016. Station lo-
cations are shown in Fig. 1A.

In order to quantify the effects of varying energy budgets/radiation
load on snow cover dynamics, the topographic index of southwestness
was used. Southwestness was calculated at 1m spatial resolution
(Fig. 2B) from the NCALM lidar-derived bare earth DEM's slope and
aspect (see Sect. 2.2) expressed in radians as follows:

= − ⎛
⎝

− ⎞
⎠

Southwestness Aspect π Slopecos
4

sin( )
(1)

Southwestness varies from +1 on southwest-facing terrain with
slope 90o (areas exposed to more solar radiation during afternoon heat),
to −1 on northeast-facing terrain with slope 90o, and it is 0 for flat
terrain. It is valid for the Northern Hemisphere and is similar to the

Fig. 1. A) Location of the Sagehen Experimental Watershed within the Southwestern USA. SNOTEL station locations are shown as a green square with the SNOTEL
station number indicated. The spatial extent of the snow on ASO lidar coverage used in this analysis is shown in yellow. B) An example of snow ablation near canopies
illustrating the dramatic potential difference between open and under-canopy snow dynamics. Photograph taken within the study domain on May 18, 2016 (day of
third lidar flight) at 39°25′20″N, 120°18′1.5″W, 2370m elevation above sea level, by A. Harpold. C) Time series of snow water equivalent (mm) for water year 2016
at three SNOTEL stations (see legend), located in or near the Sagehen Experimental watershed in the Northern Sierra Nevada range of California, USA. The station
elevations in meters are indicated in the legend, and the station locations are shown on the map in panel A. The dates of the three ASO flights are indicated with
vertical black dashed lines; D) Daily average air temperatures at the same three SNOTEL stations. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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diurnal anisotropic heating index (DAH) (Böhner and Antonić, 2009); it
represents snow ablation effects in the Sierra Nevada better than more
complex radiation/heat load indices (Cristea et al., 2017). Many pre-
vious studies have used northness to quantify solar shelter (Molotch and
Margulis, 2008; Veatch et al., 2009) and would have likely yielded si-
milar results to those found here. In order to investigate the dependence
of snow cover on topography, the 1m classified ASO pixels were binned
into 48 bins based on elevation and southwestness. The elevation bins
in meters were as follows:< 2000, [2000, 2100), [2100, 2200), [2200,
2300), [2300, 2400), and>2400m and southwestness bins comprised
of the following intervals: [−0.5, −0.3), [−0.3, −0.2), [−0.2, −0.1),
[−0.1, 0.0), [0.0, 0.1), [0.1, 0.2), [0.2, 0.3), and [0.3, 0.5]. The frac-
tional vegetation cover (fVEG) was computed at 10m resolution as the
fraction of 1m pixels that comprise a 10-m pixel and had NCALM ve-
getation heights> 2m (Fig. 2C).

2.2. Lidar data sets & processing

Two different sets of airborne lidar data were used – a snow-off data
set collected in the summer of 2014, and three snow-on overflights
during the snow depletion in 2016 (Fig. 1A, C–D). The 2014 snow-off

dataset is part of the USFS Tahoe National Forest lidar survey collected
by the National Center for Airborne Laser Mapping (NCALM) (USFS,
2015) hereafter referred to as NCALM or snow-off lidar. The NASA
Airborne Snow Observatory (ASO) (Painter et al., 2016) collected snow
on airborne lidar data over Sagehen on March 26, April 17, and May 18,
2016. More details on the lidar datasets and their processing are pro-
vided in the Supplement.

We preprocessed the data in two important ways: by excluding areas
and improving the accuracy of the lidar-derived elevation datasets.
Slopes greater than 30o and lake/pond water bodies as delineated by
the National Hydrography Dataset (high resolution) (https://nhd.usgs.
gov/) were excluded from the analysis. We used this slope threshold
because the uncertainty in elevation increases dramatically above 30
degrees slope (Takahashi et al., 2005; Tinkham et al., 2012). In order to
eliminate any vertical biases between the ASO lidar return elevations
and the NCALM DEM, a point-cloud-to-point-cloud comparison was
performed between the two data sets above the snow-free US Highway
89 in the NE-most corner of the study domain (Fig. 2A). Only ground-
classified NCALM points were used, and all ASO returns were used for
this comparison. Results indicated that the lowest 10th percentile of the
ASO to NCALM differences in mean elevations in each grid cell over

Fig. 2. A) Elevation map of the study area – the Sagehen Experimental Watershed and Independence Lake area in the Northern Sierra Nevada range of California,
USA. Elevation bands are shown in tan/brown as used in the analysis. B) Map of southwestness (Eq. (1)) in the study area, C) map of the fraction of tall canopy, fVEG,
at a 10m resolution, derived from the NCALM 2014 snow-off lidar, D) zoomed in map of vegetation structure, classifying pixels as tall trees, open areas or neither (at
1 m resolution) (See Sect. 2.2). The zoomed in area is indicated with a black rectangle in panels A and B and a yellow rectangle in panel C. The SNOTEL station
locations are shown as triangles in panels A–C (numbers indicating station designations). The DTS cable layout is indicated in light green in panels A–B, red in C, and
light blue in D, and distance in meters along the cable is indicated with crosses. Missing data are shown as dark grey. The maps' projection for these and subsequent
maps is UTM Zone 10 N, datum NAD83. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

T.S. Kostadinov et al. Remote Sensing of Environment 222 (2019) 34–49

37

https://nhd.usgs.gov
https://nhd.usgs.gov


Hwy 89 was 0.23m, 0.26m, and 0.38m for the March 26, April 17 and
May 18, 2016 ASO flights, respectively. These values were subtracted
from all ASO return elevations in order to correct vertical biases relative
to the NCALM DEM (cf. Ferraz et al., 2018). As explained later, these
vertical biases likely resulted from a number of different error sources;
we note that vertical co-registration and corrections of snow-on data-
sets is fairly routine (Hopkinson et al., 2012).

We developed a method to classify vegetation and snow presence in
order to map snow cover in both under canopy and open locations. This
method first determined whether vegetation existed above 2m and if
so, whether it had low branches below 2m. To do this, we used the
snow-off lidar point cloud data using a 1-m grid to identify returns
above 2m, deemed forest covered, and returns between 0.15 and 2m
which we interpreted as low vegetation (e.g. near ground level bran-
ches). Areas with low vegetation were completely excluded from the
analysis because low branches could be confused with the snow surface.
Forest covered areas without low vegetation (i.e. no snow off re-
turns< 2m and≥0.15m) were available and used for under canopy
snow cover estimation. In addition, areas with vegetation< 0.15m
were classified as open. After the vegetation classification, the presence
or absence of snow was determined for each of the three ASO snow-on
lidar datasets. Each 1-m ASO pixel that was either open or forest-cov-
ered without low vegetation was classified as snow covered if the
within-pixel mean ASO return elevation was ≥ 0.15m and < 2m for
forest-covered pixels without low vegetation and≥0.15 and≤5m for
open area pixels. Conversely, a pixel was classified as snow free if ASO
returns are found between −0.30m and 0.15m. Details of the classi-
fication criteria are given in Supplement Tables S1 and S2, including an
example of application of the criteria used to classify a pixel. The goal
of these classifications was a conservative and rigorous method for
mapping snow presence under canopy that can be upscaled to fSCA
estimates. Furthermore, choice of the various thresholds for pixel ex-
clusion and vegetation and snow classification was driven by the need
to compromise between greater accuracy and greater data availability.
The optimum height thresholds are likely to differ in areas with dis-
similar snow and vegetation characteristics. ASO lidar snow classifica-
tion both in open areas and under the canopy were validated with in-
situ DTS measurements, described in the following Sect. 2.3. This re-
presents the first published ASO lidar field validation under the canopy,
additional validation efforts are underway (Painter et al., 2016).

2.3. Distributed temperature sensing in-situ measurements

Distributed temperature sensing (DTS) uses a fiber-optic cable as a
thermometer and relies on Raman spectrum scattering and time-domain
reflectometry to derive near-continuous temperatures along the cable
over the course of the deployment (Selker et al., 2006; Tyler et al.,
2009; Hausner et al., 2011). The DTS cables were interrogated with a
Silixa XT (Hertfordshire, UK) DTS instrument to return temperature
observations every 0.25m along the length of each cable. The DTS
cable layout is shown in Fig. 2, with the DTS instrument located at the
0m points. The cables were georeferenced to UTM WGS84 space using
a hand-held Trimble GNSS (Sunnyvale, CA) and then converted to
NAD83 using VDATUM® (NOAA) to match the lidar data. Temperature
measurements were taken every 30min between 10 March and 18 May
2016. DTS temperatures were calibrated using a USGS stream gauge as
a temperature reference. Double-ended calibration (van de Giesen
et al., 2012) yielded a maximum duplexing root mean square error
(RMSE) and mean bias (Hausner et al., 2011) of 0.34 °C and 9.4× 10−6

°C, respectively. In an unbiased sample, the RMSE is equivalent to the
standard deviation, indicating that the true temperature of the cable is
95% likely to be within 0.68 °C (2 standard deviations) of the DTS-
observed temperature.

Calibrated DTS temperatures were used to assess the presence or
absence of snow at each point along the cable. Snow was assumed to be
present if (a) the daily mean absolute value of temperature was less

than or equal to 1 °C and the daily standard deviation of observed
temperatures was<0.353 °C. This daily standard deviation threshold
corresponds to a diurnal temperature range of 1 °C, if a sinusoidal
diurnal signal is assumed, similar to methods employed by Raleigh et al.
(2013). DTS data were mapped at a spatial sampling rate of 0.25m,
providing the ability to resolve temperature changes over 0.50–0.75m
(Tyler et al., 2009) – finer than the 1m pixel resolution of the lidar data.
More details on the DTS measurements and data processing are given in
the Supplement.

2.4. fSCA and k factor calculation

We applied the 1-m snow presence and absence observations de-
rived from lidar and DTS in order to develop estimates of fSCA and a
newly developed fSCA under-canopy correction factor, k (Eq. (3)
below). fSCA could be independently estimated as the fraction of snow
covered versus snow free 1-m pixels classified as open versus canopy-
covered without low vegetation. The fSCA estimates and canopy cor-
rections were primarily analyzed and shown over 10-m grids to better
accentuate the effects of topography, but were computed at 100m and
1000m grids to study scaling effects. The fSCA under-canopy correction
factor, k, was defined as the ratio of fSCA under the canopy to fSCA in
the open:

=k
fSCA canopy

fSCA open
_

_ (2)

Most operational fSCA products assume that k=1. We then de-
veloped two-dimensional linear interpolation based on the k factors
within each southwestness/elevation bin, separately for each ASO
flight, i.e. the k factors are also dependent on the date. The k factors for
each ASO flight were then mapped to the terrain at 10m resolution as a
function of southwestness and elevation. Next, fSCA_open was de-
termined for each 10m pixel from the 1m ASO-based binary snow
determinations. fSCA_corrected for each 10m pixel was then calculated
as:

= ∗ + −∗ ∗fSCA corrected fSCA open k fVEG fSCA open fVEG_ ( _ ) _ (1 )
(3)

Eq. (3) is therefore applied on a per-pixel basis at 10m spatial re-
solution. We compare the fSCA_corrected estimates from spatially vari-
able k factors against the typical assumption that k=1 to illustrate
bias.

We assessed the sources of uncertainty in our new lidar-derived
fSCA estimation method in several ways. Lidar vertical uncertainty
sources are presented in the Supplement Sect. 1 and discussed in Sect.
4. One of the primary sources of uncertainty is the number of both
snow-on and snow-off returns that penetrate the forest canopy and re-
turn information about the snow surface and low vegetation, respec-
tively. We counted the number of valid returns in the open and under
the canopy for each southwestness bin and discuss the implications on
uncertainty (Supplement Fig. S1 & S2; Sect. 4). Because we developed
relationships for the southwestness-elevation bins, rather for each in-
dividual 10-m pixel, we were able to distribute the k factor to 10m
pixels with known topography but limited under canopy returns. In
order to assess the uncertainty of the fSCA corrections factors, k (Eq.
(3)), and test whether they were statistically significantly different from
k=1, bootstrapping was employed by repeatedly removing non-over-
lapping 10% of the valid observations in each southwestness/elevation
bin, and performing the k calculation with the remaining 90% of the
data. The non-parametric sign test was performed on the thus obtained
sample of ten k factors in each bin, testing whether the median k was
significantly different from unity. Finally, recognizing that not all 1-m
pixels are available within each coarser resolution pixel to compute
fSCA and k, we employed a Monte Carlo theoretical simulation to es-
timate the associated uncertainty in the estimation of fSCA in the open
and under the canopy and the k factor for different availability of pixel-
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level 1-m data (i.e. lidar returns under canopy), as well as spatial re-
solutions of 10 and 100m.

3. Results

3.1. Site climate and snowpack in 2016

The 2015–2016 December–February temperature at the 1962m
SNOTEL (station #540) was −0.60 °C, at the 2128m SNOTEL (station
#539) was −0.57 °C, and at the 2541m (station #541) it was
−1.37 °C. Station locations are shown in Fig. 1A. All SNOTEL stations
showed periods above freezing through the winter months (Fig. 1D).
Upon inspection, snowpack characteristics exhibited differential melt in
open vs. canopy locations (Fig. 1B), illustrating the need for quantifying
these differences at the watershed scale. Snow water equivalent (SWE)
at three different elevations in the Sagehen vicinity varied strongly by
station elevation (Fig. 1C). Specifically, the maximum SWE at ~2500m
was ~5–6 times larger than the maximum SWE near 2000m elevation.
In addition, the maximum SWE occurred 30–50 days later in the season,
and snow disappearance occurred 50–70 days later at the highest ele-
vation compared to the lower elevations. The sampling by the three
ASO lidar overflights (black dashed vertical lines in Fig. 1C & D) oc-
curred during the ablation season at the lower elevations, and captured
near-peak accumulation and the beginning of ablation at the higher
elevations. The progression of snow ablation is evident in the lidar
derived snow depths for March 26, April 17 and May 18, 2016
(Fig. 3A–C). The lidar-derived snow depths showed snow free areas
even on March 26, 2016 (Fig. 3A) in contrast to the more sheltered
SNOTEL stations that sit in large forest gaps (Fig. 1C). By May 18, only
the higher elevations exhibited widespread snow coverage, while snow
at lower elevations was preserved longer on the north-facing, southern
edge of a meadow and in small forest gaps (Fig. 3D–F).

The ASO point cloud was used to classify the 1m pixels into four
categories – snow or no snow in tall canopy without branches< 2m
and snow or no snow in open pixels (Fig. 4A–C). Areas with low canopy
(i.e. branches< 2m) were discarded from the analysis. The March 26,
2016 map (Fig. 4A) indicates that the majority of the study area is
snow-covered at open and canopy pixels, while some lower elevations
and high southwestness areas were snow-free. The April 17, 2016
image exhibited significant ablation in progress and substantial snow-
free areas, whereas the May 18, 2016 flight had a majority of the wa-
tershed snow free. Fig. 4A–C illustrate the widespread distribution of
tall canopy pixels where snow depth/presence could be detected. The
majority of classified pixels were in the open for all three ASO flights,
but there was a sufficiently large number of observations under the
canopy (typically> 104 and with one exception> 103) to develop
statistically robust comparisons against the DTS observations (Sect. 3.2;
Table 1, Supplement Figs. S1 & S2).

3.2. DTS observations and ASO Lidar validation

The DTS mean daily temperature observations for the 1500-m cable
length running to the SW direction from the instrument (Fig. 2, 0 m
mark) produced reliable snow presence information for verification
against the lidar-derived snow presence. The data were of high quality
with almost no temperatures lower than −1 °C (Fig. 5A) and clear se-
paration between daily variance in snow-covered and air-exposed cable
temperatures (Fig. 5B). The cable segment running through Sagehen
Creek was evident near the 50m distance as a zone of near-constant
temperatures> 1 °C. The daily temperature standard deviations
(Fig. 5B) illustrate that there was a sharp divide between values mostly
less than the threshold value of 0.353 °C and much higher values (dark
red), resulting in reasonable snow presence classification (Fig. 5C). The
temporal progression of each DTS sample point (along the x-axis) in
Fig. 5C illustrated patches of snow melting and decreasing in size
(appearing as rightward-pointing wedges) and eventually disappearing.

Some snow-free regions were present very early in the season and may
be a consequence of logs and debris that the DTS cable crossed. Both
open and under canopy fSCA was determined from DTS observations as
the fraction of open or tall canopy pixels overlaying the DTS cable that
were snow-covered (Fig. 5D). DTS-determined fSCA was near one in
mid-March but fSCA under canopy was lower than open areas fSCA
from mid-March until near snow disappearance in late April. The pro-
gressively lower fSCA values both in the open and under the canopy
converge as the snow disappears. At the very end of the snow cover
season in May, the under canopy fSCA values were slightly higher than
fSCA in the open.

Validation of the ASO snow binary product (Fig. 4) using DTS snow
presence/absence indicated excellent correspondence between the ASO
lidar and the in-situ DTS snow observations. The classification agree-
ment both under the canopy and in open areas varied between 85% and
~96% (Table 1). There were ~3.4 DTS sample points per ASO-based
1m pixel on average, or effectively ~1.7 independent DTS samples per
ASO pixel. The DTS snow classification values falling within an ASO
pixel were in agreement with each other (i.e. they all indicated either
snow or no snow) in 94.2%, 95.7%, and 99.9% of the cases for the
March, April and May ASO flights. The valid under-canopy returns were
approximately an order of magnitude fewer than returns in open areas.
However, the number of ASO lidar under canopy returns along the DTS
cable (~ 100 of ~1500 total pixels) illustrated the feasibility of the
lidar-based method for detecting under-canopy snow presence.

3.3. Watershed-scale open and under canopy fSCA and k factors

Over the entire study domain, fSCA under the canopy was smaller
by 0.07 to 0.17 than fSCA in the open (Table 2). Open and under ca-
nopy fSCA were explored separately for various elevation and south-
westness bins (Fig. 6A–C). Several key fSCA variability patterns were
notable: fSCA values were generally higher at higher elevations, and
fSCA was also higher earlier in the ablation season, which is consistent
with SNOTEL observations (Fig. 1). With few exceptions, fSCA de-
creased with increasing southwestness. In many cases the decrease was
large, e.g. from ~1 for NE-facing slopes to< 0.5 on southwest-facing
slopes in the 2300–2400m elevation range for the April ASO flight
(Fig. 6B). Most southwestness/elevation bins had higher fSCA in the
open than under canopy, consistent with the results for overall study-
area fSCA. A notable exception occurred for the higher positive
southwestness values, where fSCA under the canopy was higher than
open fSCA in most elevation bins (Fig. 6A–C).

To aid in the interpretation of open and under canopy fSCA pat-
terns, we developed a k factor that is the ratio of under canopy to open
fSCA (Eq. (2)). The k factor was generally less than one, reflecting
greater fSCA in the open than under canopy (Fig. 6D–F; Supplement
Tables S3-S5, Supplement Fig. S3). k was generally less than one (near
0.8) for intermediate fSCA values and for most southwestness bins and
converged to unity as fSCA approaches fully snow covered earlier in the
season and at higher, more sheltered locations. (Supplement Fig. S3).
k > 1 occurred for high southwestness> 0.2, with some exceptions.
Most k factors were statistically different from unity at the p < 0.05
and p < 0.01 levels (Supplement Tables S3–S5). High variability of k
and k factors> 1 occurred for lower values of fSCA in the open. fSCA
values< 0.2 are often considered snow free (e.g. Hall et al., 2012;
Kostadinov and Lookingbill, 2015) and the ratio k is expected to exhibit
higher unceratinty in such cases. Uncertainty in fSCA and k estimation
at various spatial aggregation scales can also result from different levels
of availability (e.g. under canopy lidar returns) of 1-m binary ob-
servations within each aggregated pixel. Theoretical Monte Carlo si-
mulations at various data availability levels indicated that the un-
certainty in fSCA and k indeed increased as data availability decreased
(Supplement Fig. S4). However, even at low data availabilities of 20%
of all pixels, the interquartile range of fSCA stayed within 0.2, resulting
in reasonable interquartile ranges of k. The medians of both fSCA and k
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always fell at the simulation's assigned true value. Importantly, this
uncertainty in fSCA and k was highly scale-dependent, being much
lower in the case of aggregation to 100m resolution as compared to the
10m case (Supplement Fig. S4).

The k factor's relationship with elevation and southwestness
(Fig. 6D–F, Supplement Tables S3–S5 and Fig. S3) gives insight into the
differential controls on snow ablation and disappearance between open

and under canopy locations. The k factor exhibited general relation-
ships with solar exposure that varied systematically by elevation and
time of year. At higher elevations and earlier in the season (e.g. March
26), there was generally little relationship between k and southwestness
and k remains near one. This reflects less solar radiation and deeper
snowpacks with higher fSCA. At lower to mid elevations during the
ablation season, the k factor was generally less than one (often about

Fig. 3. Snow depth on a 1m grid using ASO lidar flight data on A) March 26, 2016, B) April 17, 2016 and C) May 18, 2016. The mean elevation of all valid ASO lidar
returns (those that are classified as snow or no snow, see Fig. 4) within each pixel is shown. Pixels over water and steep terrain (slope≥ 30 o) are excluded, and all
missing data and unclassified pixels are show as dark grey. A zoomed in area (indicated in a red rectangle) of the snow depth maps of A–C is shown in panels D–F,
respectively. The DTS cable layout is shown in yellow in panels A–C. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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0.8) for southwestness values< 0.2, reflecting greater snowpack abla-
tion under canopy than in the open driven by incoming solar radiation.
k factors> 1.0 tended to occur for high southwestness values> 0.2 and
at lower elevations and later in the ablation season, indicating that the
final remaining patches of snow tended to occur under the canopy
(where they are sheltered from stronger shortwave exposure in

southwest-facing terrain and later in the season), after snow had nearly
completely melted on the more exposed aspects. These observations of
differential under canopy and open fSCA driven by their energy en-
vironment have implications for assumptions about the role of radiation
and interception in determining snow disappearance (Lundquist et al.,
2013). These systematic differences also hint at the opportunity to

Fig. 4. Binary snow classification on a 1m grid using ASO lidar flight data on A) March 26, 2016, B) April 17, 2016 and C) May 18, 2016. Pixels are classified (see
legend for colour coding) according to the presence or absence of snow, and whether they represent a tall canopy or an open area according to the NCALM 2014
snow-off lidar overflight. Note that a given pixel's vegetation structure may be neither, in which case it is shown as missing data (dark grey) and is not used in the
analysis. See Sect. 2.2 for details. Pixels over water and steep terrain (slope > 30 o) are also excluded. The DTS cable layout is shown in yellow. A zoomed in area
(indicated as a black rectangle) of the snow presence/absence maps of A–C is shown in panels D–F, respectively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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develop a canopy-correction scheme that can be applied to remote
sensing snow products. In addition, we note that there was no clear
relationship between fVEG and the k factors (not shown).

We applied the k factor to the ASO lidar-derived fSCA maps to es-
timate biases in under canopy fSCA and explore the potential to correct
larger scale biases in satellite-derived fSCA estimates. Across the overall
study area (Fig. 1A), fSCA was corrected from 0.919 (when k=1 is
assumed) to 0.890 (when our variable k factor is applied, Eq. (3)) in
March, from 0.643 to 0.590 in April, and from 0.286 to 0.272 in May,
respectively. The correction always decreased the fSCA, reflecting the
lower fSCA and earlier snow disappearance under the forest canopy in
the majority of the study area (Fig. 7). These differences were all sta-
tistically significant according to the two-sample paired t-test and the

Wilcoxon rank-sum test at the 95% significance level (p ~ 0). The ab-
solute difference between corrected and uncorrected fSCA was largest
(~0.05) in April. The magnitude of the fSCA correction increased as k
diverged from one, vegetation fraction increased, and fSCA was higher.
The differences between fSCA_corrected and fSCA_open are mapped in
Fig. 7D–F and were consistent with the maps of k factors (Supplement
Fig. S5), e.g. both March and April exhibit fSCA decreases after cor-
recting with the k factor. On the other hand, May exhibited both de-
creases and increases in fSCA after correction. Notably, southwest-fa-
cing areas at all elevations and all areas in the lower elevation band of
2000–2100m exhibited fSCA increases due to the correction. While the
corrections to watershed-scale fSCA were generally< 0.1 absolute
fSCA, corrections to individual pixels could exceed 0.3 at the 10-m
resolution scale (Fig. 8), and indicated the potential value of this cor-
rection method when working at finer spatial scales.

4. Discussion

Snow disappearance timing and fSCA are fundamental to

Table 1
Validation of lidar snow cover determinations with in-situ distributed tem-
perature sensing (DTS) measurements. The percentage of pixels over which the
DTS and lidar agree as to the binary snow cover classification (snow or no
snow) under canopy, in the open and overall are shown separately for each ASO
flight date – March 26, April 17 and May 18, 2016. The number of agreeing
pixels and the total number of pixels with valid DTS and ASO coincident ob-
servations are shown in parentheses after the percentage. For perspective, there
were a total of 2344 total lidar-based 1-m pixels containing any DTS data point.

March % April % May %

Agreement canopy 89.7% (61/68) 85.0% (142/167) 92.8% (129/139)
Agreement open 93.2% (690/740) 86.3% (648/751) 97.0% (736/759)
Overall agreement 92.9% (751/808) 86.1% (790/918) 96.3% (865/898)

Fig. 5. A) DTS temperature as a function of time (x-axis) and distance along the cable (y-axis, starting at 0m at the DTS instrument assembly, only the longer cable
running SW of the instrument is shown) – the daily mean of temperature is plotted. B) Daily standard deviation of the DTS temperatures as a function of time and
distance along the cable. C) The DTS snow presence classification on a daily time scale, as a function of time and distance along the cable. D) Time-evolution of fSCA
over the DTS cable, as determined by DTS points falling under tall canopy vs. open areas (at 1 m pixel resolution). The three dash-dot vertical lines in all panels
indicate the timing of the ASO lidar overflights (black in panels A and D, white in panel B, and green in panel C). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 2
Fractional snow-covered area (fSCA) as determined for the whole study domain
(Fig. 1A) for the three 2016 ASO lidar overflights.

March 26, 2016 April 17, 2016 May 18, 2016

Open 0.92 0.64 0.29
Under canopy 0.83 0.47 0.22
Difference (open - canopy) +0.09 +0.17 +0.07
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understanding ecohydrological processes (e.g. Lundquist et al., 2013,
Harpold et al., 2014, Harpold et al., 2015b) and underlie the develop-
ment and verification of numerous snowmelt modeling techniques (e.g.
Molotch and Margulis, 2008; Carroll et al., 2001; Slater et al., 2013;

Wrzesien et al., 2017), but are challenging to directly observe under
forest canopy. Our newly developed lidar-based technique for mapping
fSCA under canopy and in the open has two clear applications. First, the
larger spatial footprint means that under canopy snow processes can be

Fig. 6. ASO lidar-determined fSCA as a function of vegetation cover (canopy vs. open areas), southwestness, and elevation band for the A) March 26, B) April 17 and
C) May 18, 2016 ASO flights. The legend in A) applies to panels B and C as well. The fSCA=0.2 threshold is plotted as a black dash-dot line. The corresponding ratio
of fSCA under the canopy to the fSCA in the open areas, i.e. the fSCA canopy correction factor k, is plotted in panels D-F for March, April and May, respectively, as a
function of southwestness and elevation bin. The legend in panel D applies to panels E and F as well. The current operational assumption of k=1 is plotted as a dash-
dot black line for reference. Black ‘x’ drawn over the symbols in panels D-F signify that the underlying open or canopy fSCA was< 0.2, indicating higher uncertainty
in the k factor. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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investigated across topographic and vegetation structure gradients that
were not previously possible with in-situ observations. Second, re-
lationships between snow disappearance under canopy and in the open,
summarized as our k factor, could be used to correct fSCA estimates that
are routinely made with passive optical retrievals on a coarser spatial
scale, e.g. from MODIS-type sensors. However, analysis of scale de-
pendence (Fig. 8) indicated that the correction factor is scale-dependent

and more variable and important at smaller spatial scales (higher re-
solutions), but also more sensitive to a lack of under canopy lidar re-
turns. This implies that potential correction schemes based on the k-
factor analysis presented here will be more important for future optical
missions and for targeted regional surveys of higher spatial resolution.
Given the potential of our lidar-based technique, we discuss the vali-
dation of the method and its limitations, as well as remaining hurdles to

Fig. 7. The corrected overall fSCA at the 10m scale for the A) March 26, 2016, B) April 17, 2016, and C) May 18, 2016 ASO lidar flights. The correction uses Eq. (3).
The fVEG map used in the correction is shown in Fig. 2C, and the correction factors used are shown in Supplement Fig. S5. Maps of the underlying fSCA in the open
used in Eq. (3) look visually similar at this scale and are not shown. The differences between the corrected fSCA and the fSCA in the open are shown in panels D-F for
the March, April and May ASO flights, respectively (open subtracted from corrected fSCA). The DTS cable layout is shown in red in panels A–C and black in panels
D–F. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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more fully utilize our technique in these two application venues.
We used in-situ DTS measurements of snow presence to verify the

prevalence and accuracy of under canopy lidar returns. ASO lidar data
has not yet been validated with in-situ measurement in steep and
forested terrain (field validation survey analysis is in progress (Painter
et al., 2016)). Thus our validation with DTS measurements presented
here is, to our knowledge, the first published ASO lidar data field va-
lidation under the canopy. While we found challenges in operating and
georeferencing the DTS system (Dickerson-Lange et al., 2015), it is
difficult to imagine a more suitable validation dataset for lidar because
the observations are< 1m resolution and can cover large extents. The
DTS observations allowed verification of accuracy of snow presence and
absence both in the open and under the canopy, as the DTS is laid out
through the conifer forest (Fig. 2). The agreement between our lidar-
derived snow presence and that from the DTS observations was ex-
cellent. There was similar agreement (> 85%) in both open and under
canopy location, supporting the robustness of the lidar observations.
Another concern with our method is that all 1-m lidar pixels with ve-
getation returns< 2m were discarded, reducing the density of under
canopy information. Despite fewer valid observations under canopies,
we had a sufficiently large number of pixels with valid observations in
every southwestness/elevation bin (Supplement Figs. S1 and S2).
However, fSCA accuracy could be degraded when there are not suffi-
cient returns and/or the spatial resolution is very fine. Given the robust
validation results found here using the relatively sparse ASO lidar

returns (< 2 points per m2), we believe this lidar-based method will be
widely transferrable to other areas with taller trees and/or denser ca-
nopies.

Two main limitations challenge the transferability of our lidar-based
method to other areas: 1. Horizontal and vertical lidar registration and
accuracy issues and other uncertainty sources, and 2. Choices in the
open and under canopy classification systems. Lidar snow depth esti-
mates have error that propagates from both snow off and snow on
elevation estimates (Deems et al., 2013). Accurately co-registered snow
depth products typically have root-mean-square error (RMSE) of
around 10 cm, but often require post-processing (Harpold et al., 2015a).
For example, our ASO datasets had to be spatially offset ~20–35 cm in
order for the snow on and snow off road surface to match. This type of
spatial bias is common and can arise from a variety of factors. The need
for such adjustments due to co-registration issues represents a limita-
tion of lidar-based snow determinations. The availability of a single
reliable area of the image (Hwy 89 in the NE corner of the study do-
main) to determine the offsets for the entire study area could also be an
additional source of uncertainty. These sources of uncertainty in lidar
elevation are discussed and quantitative estimates are provided in the
Supplement Sect. 1. Summer vegetation can also complicate ground
detection during snow-off lidar flights (Bühler et al., 2016). The second
set of limitations in our method arise from how we classify snow pre-
sence and define potential under canopy and open locations. We ap-
plied a 15 cm threshold of snow depth to define snow presence, i.e.

Fig. 8. Comparison between corrected fSCA (using the k factor, Eq. (2)) and uncorrected (i.e. open) fSCA at different spatial scales – 10m (top row, panels A,D, G),
100m (middle row, panels B,E, H), and 1000m (bottom row, panels C,F,I), for the ASO lidar data from March 26, 2016 (panels A–C), April 17, 2016 (panels D-F), and
May 18, 2016 (panels G–I). The red dotted line is the 1:1 line, and the colour mapping of each data point represents the value of fVEG coarsened to the respective
scale (colorbar given at the bottom). Each point corresponds to a pixel in the respective image. Original 10m data were aggregated to the coarser spatial scales using
the mean of the underlying pixels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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depths of< 15 cm are considered snow free. This threshold is loosely
based on previous measurements of lidar-derived snow depth accuracy
(Deems et al., 2013; Harpold et al., 2015a) and on our own best esti-
mates of the elevation uncertainty from various sources (Supplement
Sect. 1). The uncertainty in bare earth and snow on elevation increases
dramatically above 30 degrees slope (Takahashi et al., 2005; Tinkham
et al., 2012), which necessitated excluding steep pixels from the lidar
analysis. In addition, values of fSCA below ~0.2 are generally con-
sidered unreliable (Hall et al., 2012) and would also bias the k factor
because the denominator of Eq. (2) approaches zero. Another major
limitation is differentiating low branches from the snow surface in
under canopy locations. To address this challenge, we applied a 2m
vegetation height threshold over which we exclude pixels from our
snow cover analysis. We found that the large number of ASO returns
under canopy (Supplement Figs. S1 & S2) ensured that discarding pixels
with low branches would still allow for fSCA estimation under the ca-
nopy. Sufficient ASO and NCALM lidar point density to allow vegeta-
tion and binary snow classification at 1m scale ensures that fSCA can be
estimated at the 10m scale and since the k factor was computed via
interpolation from terrain variables only, the fSCA correction can be
applied for any 10m pixel where fSCA_open and fVEG can be estimated.
Future applications of our method will need to consider these as-
sumptions. For example, the threshold may need to be changed for
areas where snow depth or bottom height of branches is routinely well
below or above 2m. Despite the subjective nature of some these as-
sumptions that were tuned to the Sagehen field site, the method appears
robust and transferrable to other locations.

The lidar point sampling used in this analysis was spatially ag-
gregated to 1m resolution to create the underlying binary snow pre-
sence/absence data (Fig. 4), whereas the fSCA analysis and k factor
computation was done primarily at 10 m and also at 100m and 1000m
resolution. It is important to assess the effects of spatial scale on our
results and hence, the applicability to sensors with similar spatial re-
solution, like Sentinel 2, and those with coarser resolution such as
MODIS. Comparisons between uncorrected and corrected fSCA at dif-
ferent spatial scales, namely native 10m, and coarsened to 100m and
1000m (Fig. 8), indicated that the largest differences were found at the
10m scale for higher fSCA values later in the ablation season, and
differences larger than fSCA of 0.2 were still found at 100m scales. At
1000m scales the k factor correction was smaller and likely not of large
hydrological importance (but still leads to statistically significant fSCA
differences at the scale of the entire study domain – see Sect. 3.3). This
demonstrates that future analyses need to explicitly take spatial scale
into account and design the correction accordingly for the target sensor.
It is evident from Fig. 8 that the k factor correction is likely to be most
important for high spatial resolution sensors, underscoring its im-
portance for future satellite missions that will collect optical and
spectral information at sub-100 m scales.

A source of uncertainty in fSCA and thus, in estimating the k factor,
is the sparsity of valid binary 1-m pixels within each spatially ag-
gregated fSCA pixel. This sparsity stems from multiple factors – thick
canopies decrease the number of lidar returns penetrating to the ground
or snow below, steeper slopes are excluded from the analysis, as are
pixels with low branches identified by the snow-off flight (< 2m) but
the tradeoffs in these choices are hard to evaluate. Monte Carlo simu-
lation of the effects of varying data availability on fSCA and k estima-
tion at 10 and 100m scales (Supplement Fig. S4) indicated that de-
creasing data availability resulted in no detected bias in the median, but
increasing interquartile ranges, as expected. The actual data availability
for the 10m analysis reported here is mapped in Supplement Fig. S6,
indicating that individual 10m pixels often exhibited low data avail-
ability, and for a significant fraction of the image availability was about
30–40%. This is partially due to the relatively low point density of ASO
lidar surveys (< 2 points/m2). At 40% data availability fSCA can be
estimated within ~ 0.15 at 10m scales, and within<0.02 at 100m
scales, resulting in reasonable k estimates with few outliers. These

Monte Carlo results suggest that future lidar missions need to be con-
ducted at higher point density (e.g. Harpold et al., 2014), in order to
increase the likelihood of canopy penetration and decrease this kind of
uncertainty. An additional consideration regarding data sparsity is the
computation of fSCA in the open for pixels where fVEG>90% (~30%
of our 10m pixels), including those for which fVEG=100% (~7% of
the pixels) (Fig. 2C). In these cases, we did not compute fSCA open and
thus Eq. (3) cannot be applied. This is because we required at least 10
valid 1-m pixels in order to compute a value at the 10m scale. Future
operational approaches will need to consider methods to include such
pixels in the analysis, e.g. by relaxing the 90% threshold and/or using
neighboring pixels for fSCA in the open estimates.

Passive optical-based satellite fSCA estimates typically make as-
sumptions about under canopy snow cover (that is hidden from their
view) that can reduce their accuracy (e.g. Molotch and Margulis, 2008;
Painter et al., 2009; Rittger et al., 2013). Some approaches consider
forest transmissivity explicitly in the treatment of reflectance
(Metsämäki et al., 2012). Romanov et al. (2003) present a model that
retrieves fSCA using spectral mixture analysis and explicitly differ-
entiate the fSCA visible to a satellite sensor from the true fSCA in a
forest that is more useful for hydrological applications. However using a
typical assumption that fSCA in the open and under canopy are equal
(k=1), we found differences between open and under canopy fSCA
were in excess of ~0.15 in some southwestness/elevation bins
(Fig. 6A–C) and as high as 0.35 for individual pixels at the 10 and
100m spatial scale (Fig. 8). There was no relationship between under
canopy fSCA and fVEG (not shown), but as expected the effects of the k
factor were greatest in high fVEG areas where the under canopy returns
had more influence. These results suggest that biases in under canopy
fSCA assumptions are likely to increase using finer scale fSCA products
that are currently under development, e.g. from sensors with higher
spatial resolution. As the fSCA information and its application become
more sophisticated (e.g. Slater et al., 2013; Kahl, 2013; Bair et al.,
2016), better treatment of under-canopy processes will be key to
maximizing the information extracted from satellite imagery.

The consistent differences between k factors from different elevation
and southwestness bins reflect underlying differences in snowpack en-
ergetics caused by the forest canopy and its interaction with the at-
mosphere mediated by local and remote terrain. Forests strongly
modify the snowpack energy balance through counteracting influences
– decreasing shortwave radiation by shading, which helps to retain
snowpack, and increasing longwave radiation by emissions from tree
trunks and canopies, which acts to warm and ablate the snowpack
(Lundquist et al., 2013). The relative dominance of shortwave versus
longwave is sensitive to forest canopy structure (e.g. Broxton et al.,
2014; Seyednasrollah and Kumar, 2014; Webster et al., 2017), as well
as latitude, elevation, slope and aspect, cloudiness and humidity, and
day of year (i.e. solar declination). Note that in addition to longwave vs.
shortwave balance, canopy interception also plays a role in reducing
snow depth and accelerating snow disappearance under the canopy
(Hedstrom and Pomeroy, 1998; Storck et al., 2002; Moeser et al., 2016;
Dickerson-Lange et al., 2017). Lundquist et al. (2013) developed a data-
based conceptual model to argue that sites with December–February
(DJF) temperatures above −1 °C were likely to retain snow longer in
the open than under canopy. This pattern of longer snow retention in
the open in warmer sites is driven by warmer air temperatures leading
to correspondingly warmer canopy temperatures and thus, greater
longwave radiation from the canopy. The three SNOTEL stations used
in this study spanned this key threshold during 2015–2016, with the
1962m and 2128m SNOTELs just warmer than the −1 °C threshold
and the 2541m SNOTEL was just colder than the −1 °C threshold. Our
widespread finding of earlier snow disappearance in under canopy
positions (i.e. k factors statistically< 1), is consistent with the
Lundquist et al. (2013) model for sites warmer than −1 °C. However,
our spatially explicit k factors show that areas in the highest elevation
bin, with DJF temperatures<−1 °C, only preserved snow longer in
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under canopy where southwestness> 0 (cyan curve for> 2400m
elevation with stars in Fig. 6F). The May k factors> 1 in high solar
exposure areas> 2400m in elevation are inconsistent with the
Lundquist et al. (2013), model because these sites should be warmer
than −1 °C and therefore have k factors< 1. These inconsistencies
suggest that a simple temperature-based threshold for predicting dif-
ferential snow disappearance under canopy may not be sufficient for
explaining details of intra- and inter-site differences (e.g. variations in
radiation that are driven by local and remote terrain shading, latitude,
and cloudiness). Similarly, we found that snow was retained longer in
under-canopy areas in high-energy environments during low fSCA
conditions in many of the lower elevation bins. We attribute this to a
shift from the trees acting to ablate the snow through longwave ra-
diation to the trees creating shaded zones where ablation is lower
during higher sun altitudes in May. Generally, elevation appeared to be
a secondary factor to southwestness in determining k factor variability
at our site. While as expected elevation determined the timing and
amount of accumulation and ablation, k varied more strongly in space
with the absolute value of fSCA and southwestness (Fig. 6, Fig. S3). This
emphasizes that a simpler temperature (i.e. latitude/elevation) based
model, such as the Lundquist et al. (2013), would miss the spatial
variability in k with local topography. Finally, k factors> 1 occurred
most frequently where fSCA values< 0.2 (Supplement Fig. S3) causing
high uncertainty but minimal hydrological effects. These findings il-
lustrate the potential new inferences into snow-forest interactions from
our new high spatial resolution technique within a single watershed.

One potential application of our lidar-based method is to oper-
ationalize the k factor (Eq. (3)) to achieve better estimates of landscape
fSCA in montane forests. Development of our k factor method would not
be possible using ground-based observations, which typically only
have<5 paired observations in open and under canopy areas (e.g.
Lundquist et al., 2013; Dickerson-Lange et al., 2017). Most landscapes
would be expected to have consistent patterns in k factors year-to-year
dictated by climate, topography, and existing forest structure. However,
k factors are not expected to be constant in time, as is demonstrated
here by the three lidar overflights capturing the ablation season
(Fig. 6A–C). Furthermore, the temporal evolution of k factors is ex-
pected to shift year to year even for the same site, due to interannual
variability in the size and cold content of the snowpack, as well as the
cloudiness, wind, humidity, and temperature during the ablation
season. Both between-site and within-site spatial and temporal varia-
bility would need to be addressed before this approach can be robustly
operationalized over continental scales. The formulation of Eqs. (2) and
(3) implies that if fSCA_open=0, then fSCA_canopy=0 for any k.
Operational application to areas for which snow ablates primarily in the
open faster than under the canopy (e.g. cold forests) will need to con-
sider ways to address this for the limiting case when snow in the open
has fully disappeared. More applications of our method across different
climate zones (and ideally multiple years) could be used to develop
relationships between the k factor and physiographic and topographic
variables, akin to the approach of Lundquist et al. (2013) but including
topography and forest canopy properties. Several additional major
challenges exist to operationalize the k factor that may make it suitable
for certain applications. For example, the k factor may be sensitive to
sensor view angle and its interaction with topography, e.g. for MODIS
(Dozier et al., 2008). Overall, these types of corrections will prove most
important for sensors with higher spatial resolution (Fig. 8) and less
view angle issues, like Landsat, Sentinel-2, and future similar missions.
An operational k factor map based on relationships to topography and
climate, combined with a decadal snow-off lidar survey to establish
vegetation structure and the DEM, could be an important tool to im-
prove daily or weekly operational satellite products in dense, montane
forests with relatively little investment.

5. Conclusions

There are few tools to observe snow processes under the forest ca-
nopy at fine spatial scales, which limits process understanding and
application of satellite derived snow products. We developed a new
lidar-based method to observe under-canopy fSCA and verified the
method with in-situ DTS observations in the Sagehen Creek watershed
in the Sierra Nevada range of California, USA. Observations of open and
under canopy snow cover have generally been restricted to a handful of
paired snow depth sensors or manual observations (Lundquist et al.,
2013; Coons et al., 2014; Harpold et al., 2014; Dickerson-Lange et al.,
2017). Our lidar-based method expanded the extent of field observa-
tions to better understand the role of topography (elevation, slope,
aspect, remote shading, etc.) and time of year on differential snow
disappearance between open and under canopy locations. Using a
multi-temporal lidar dataset, we showed that the expected earlier snow
disappearance under canopy based on a simple model of DJF tem-
perature (Lundquist et al., 2013) was generally correct in predicting
earlier snow disappearance under forest canopy. However, the higher
elevations were colder than −1 oC and melted snow earlier in under
canopy position in more sheltered areas, but retained snow longer
under canopy in areas with more solar exposure. Similarly, many of the
last-to-melt locations were under canopy positions that benefit from
canopy shading and sheltering in high-energy environments. These
types of observations could help verify and improve physically-based
snowmelt models. In addition, our k factor (the ratio of fSCA under
canopy to fSCA in the open) can be used to improve overall fSCA es-
timates by refining assumptions about under canopy fSCA (e.g. k=1)
used in optical remote sensing products. The temporal evolution of k
and its variability would need to be investigated further to apply our k
factor approach in an operational setting across sites with varying cli-
mate and topography. We demonstrated that preferential snow dis-
appearance under canopy can make a sizable impact on fSCA at 10 and
100-m scales, particularly in areas with higher vegetation cover. We
believe that future applications of our method will improve our un-
derstanding and prediction of snow-forest interactions in complex ter-
rain and build towards better corrections of satellite-derived fSCA
products in dense, montane forests.
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